Дивергенция. Конвергенция

Процессы обработки информации, поступающей в нервный центр (если он сенсорный), или формирование команд к исполнительным органам (в ефекторному центре) обусловлены взаимодействием нейронов посредством синаптических контактов. В таком случае можно обнаружить явления, что называют дивергенцией и конвергенцией (рис. 37).

Дивергенция - это способность нейрона устанавливать многочисленные связи с другими нейронами. Вследствие этого одна и та же клетка может участвовать в различных нервных процессах и реакциях, контролировать большое число других нейронов, то есть каждый нейрон может обеспечить распространение импульсов - иррадиацию возбуждения. Процессы дивергенции более типичны для афферентных отделов ЦНС.

Конвергенция - схождение различных путей проведения нейрон-ных импульсов к одной и той же нервной клетки, больше присуща нервным центрам эфферентных отделов.

Большинство нервных центров представлено скоплением разнообразных нейронов. Среди них бывают как возбуждающие, так и тормозные нейроны, нейроны сенсорные и моторные (афферентные или эфферентные). их довольно сложное взаимодействие и обеспечивает выполнение соответствующих функций.

Взаимодействие рефлексов

В процесс регуляции большинства сложных функций организма, организации рефлекторного ответа очень часто привлекаются несколько нервных центров, которые могут размещаться даже на различных этажах ЦНС. Обусловлено это філогенетичними особенностями формирования ЦНС. Появление "младшего" отдела сопровождалась формированием в нем новых центров регуляции. Но и "старые" нервные центры, расположенные в низших отделах, сохраняли свойственные им функции. При этом терялась абсолютная автономность отдельных сегментов ЦНС, все большая часть функций "переходила" высшим отделам. Этот процесс получил название енцефалізації функций. Поскольку головной мозг формировался поэтапно, от заднего мозга до переднего с его большими полушариями, то с формированием коры больших полушарий происходит подчинение ей других отделов ЦНС, то есть кортикалізація функций.

Поскольку каждый из нервных центров отвечает за определенные рефлексы, во время их взаимодействия можно говорить о взаимодействии различных рефлексов. Это взаимодействие осуществляется на основе определенных закономерностей, которые позволяют ЦНС решать свои функциональные задачи как с целенаправленного регулирования различных систем организма, так и организации его поведения в конкретных, постоянно меняющихся условиях внешней среды.

Можно выделить такие принципы координации функций ЦНС.

1. Торможение в ЦНС.

Важной частью нейронных цепей, образующих рефлекторные дуги, является наличие тормозных нейронов (рис. 38). Вследствие этого ослабляется или совсем прекращается интенсивный процесс возбуждения, что в основном обеспечивает упорядочение проявления рефлекса. Пример торможения - реципрокне торможения мышц-антагонистов на уровне мотонейронов спинного мозга (рис. 38, а). Процесс тормозного влияния запускается через специальные тормозные клетки Реншо, содержащихся в спинном мозге. При поступлении афе

Рис. 38. Торможение в ЦНС : а - участие тормозных интернейронов спинного мозга (Г) в регуляции деятельности мышц-антагонистов: торможение (-) мотонейрона мышцы-разгибателя (МР) во время возбуждения (+) мотонейрона мышцы-сгибателя (МЗ); б - поворотное (постсинаптичне) торможения (МН - мотонейрон, Г - тормозная клетка Реншо; М - мышца); в - торможения нейронов промежуточного мозга с участием тормозной корзинного клетки (Г); г - пресинаптичне торможения (Г - тормозная клетка; Н - нейрон; Пр - пресинаптичне волокно; за Екклсом)

рентной импульсации они активируются одновременно с нейронами, которые возбуждаются, обеспечивая реципрокный взаимосвязь при осуществлении двигательных рефлексов: мотонейроны одних мышц возбуждаются, а их антагонистов - тормозятся.

Второй, довольно распространенный, тип первичного торможения - возвратное торможение (рис. 38, б). Клетки Реншо располагаются еще и таким образом, что через коллатерали возбужденного мотонейрона вызывают его торможение. Это типичный пример отрицательной обратной связи, когда подавляется чрезмерная импульсация.

2. Иррадиация и концентрация нервных процессов.

Возбуждение, возникшее в одном из центров, может распространяться через коллатерали и синапсы на другие центры. Процесс иррадиации чаще всего развивается в случае действия сильного раздражителя. Например, во время сильного давления на лапку лягушки сокращаются не одна, а все конечности. Через некоторое время иррадиация меняется на явление концентрации возбуждения в необходимом центре. Это обусловлено действием тормозных синаптических связей. Процессы иррадиации и концентрации основываются на свойствах конвергенции и дивергенции.

3. Явления суммации и окклюзии

(рис. 39). Суммация (облегчение) оказывается во время воздействия нескольких подпороговых стимулов (с разных рецепторов), каждый из которых, действуя отдельно, не вызывает ответа. А их суммация (при условии рядом расположенных синаптических полей) способствует проявлению ответа нервного центра (явление облегчения).

Рис. 39. Схема, иллюстрирующая явление облегчения (1) и окклюзии (2) нервного импульса: а - в центральных кругах изображены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон (В, 2); пунктирными линиями обведены нейроны, которые возбуждаются только за одновременного раздражения обеих нервных волокон; б -в центральной части, образованной кругами, перекрещивающихся расположены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон

Противоположное явление - окклюзии (заклинивания) - развивается при тех же условиях расположения синаптических полей, но при одновременном действии нескольких раздражителей надграничної силы. Суммарная ответ может быть меньшим, чем арифметическая сумма ответов на каждый из раздражителей в отдельности, что происходит за "перекрытия" как на уровне рецептора, так и общих центральных нейронов.

4. Принцип "общего конечного пути"

(рис. 40). Он основывается на явлении конвергенции. Афферентных входов в ЦНС значительно больше, чем эфферентных выходов. Следовательно, один и тот же рефлекс можно вызвать, раздражая различные рефлекторные поля.

5. Принцип доминантного очага.

Содержание принципа заключается в том, что в случае одновременного возбуждения нескольких нервных центров один из очагов может стать доминантным. Вследствие этого к нему могут активно привлекаться (иррадиировать) возбуждения из других очагов, что приведет к суммации возбуждения, усиливая доминантное возбуждение. Высокую возбудимость нейронов обусловливают соответствующая аферентна импульсация (например из переполненного мочевого пузыря), гуморальные влияния. В результате оказывается, что для организма функция этого центра в конкретный временной промежуток становится важнейшей.

Основные признаки доминантного очага следующие:

1) стойкость возбуждения во времени;

2) повышенная возбудимость;

3) способность к суммации. Доминанта - это физиологическое основание возникновения взаимосвязей между отдельными нервными центрами при формировании условных рефлексов, основа внимания.

Рис. 40. а - клетки спинномозговых

ганглий; б - промежуточные нейроны; в - мотонейроны; г - мышцу (зачеркнуто тела нейронов, которые тормозят нервные импульсы; за Шеррингтоном)

центре ?

1. Конвергенция (convergere , лат. – сходиться) это схождение различных импульсных потоков от нескольких нейронов к одному вставочному или эфферентному нейрону. Шеррингтон называл это явление «принципом общего конечного пути». Например, сокращение мышцы (за счёт возбуждения альфа-мотонейрона) можно вызвать путём растяжения этой мышцы (рефлекс с мышечных веретён) и путём раздражения кожных рецепторов (сгибательный рефлекс) и т.п.
2. Дивергенция (divergere , лат. – расходиться) – это способность нейрона устанавливать многочисленные синаптические связи с другими нейронами. Благодаря этому один нейрон может участвовать в нескольких разных реакциях, передавая возбуждение другим нейронам, которые в свою очередь могут возбудить ещё большее количество нейронов, обеспечивая путём иррадиации распространение возбудительного процесса по ЦНС.

103.Что такое пролонгирование возбдужения в нервном центре ?

Этим термином обозначается явление, при котором рефлекторный ответ сохраняется после прекращения действия раздражителя, т.е раздражение прекратилось, а, например, мышца продолжает сокращаться.

Существует 2 механизма этого феномена:

1. Следовая деполяризация мембраны нейрона, возникающая еще на фоне сохраняющегося ВПСП, создает условия для ритмической генерации потенциалов действия. Это кратковременное последствие.

2. Циркуляция возбуждения по замкнутым цепям нейронов в рефлекторном центре (принцип Лоренто-де-Но).

До прихода тормозного импульса или утомления одного из синапсов возбуждения может достаточно долго циркулировать по этим цепям. Бала выдвинута гипотеза о тем, что кратковременная память обусловлена реверберацией возбуждения в цепях положительной обратной связи.

104. Что такое феномен облегчения и каков его механизм ?

Явление облегчения. Отдельные нейроны являются общими для каких-то двух рефлексов. При изолированной реализации одного из рефлексов эти нейроны не дают ответной реакции, так как раздражение для них оказывается подпороговым. При совместной реализации двух рефлексов их подпороговые эффекты суммируются и достигают пороговой величины. В результате суммации ответная реакция оказывается больше простой суммы изолированных эффектов.

Пул нейронов, расположенных в передних рогах спинного мозга состоит из высоковозбудимых (1,2) и низковозбудимых неронов (3). При раздражении только 1 афферентного нервного волокна в состояние возбуждения приходит нейрон 1, а в нейроне 3 возникает деполяризация, не достигающая критического уровня потенциала (т.е. его возбудимость увеличивается). При этом на выходе регистрируется сигнал равный 120 мВ.



При раздражении только II афферентного волокна возбуждается нейрон 2, а в нейроне 3 возникает увеличение возбудимости и на выходе регистрируется потенциал, например, равный 120 мВ. При одновременном раздражении I и II афферентных волокон в состояние возбуждения переходят нейроны 1,2,3. При данном воздействии регистрируется суммарный потенциал 320 мВ, т.е. не равный арифметической сумме отдельных потенциалов (120+120=240 мВ). Это обусловлено тем, что при одновременном раздражении волокон I и II дополнительно включается нейрон 3. Таким образом облегчение – это усиление поступающего сигнала.

Временное

пространственное

105. Что такое суммация возбуждения в нервном центре и ее механизм ?

Особенностью ЦНС является то, что, как правило одни потенциал действия не вызывает возбуждение эффекторного нейрона. Только на ритмический раздражитель одного рецептора или одновременное раздражение нескольких нейронов возникает возбуждение эффекторного нейрона.

В зависимости от ситуации суммация бывает: 1) временная или 2) пространственная.



В случае временной суммации происходит суммирование квантов медиатора на постсинаптической мембране. Если в область постсинаптической мембраны ввести электрод и соединить его с усилителем постоянного тока и осциллографом, то можно наблюдать, что на одиночный раздражитель возбуждение нейрона не возникает, но на постсинаптической мембране возникает небольшой по амплитуде ВПСП.

С точки зрения возникновения возбуждения данный ВПСП является недостаточным, так как не может достигнуть критического уровня деполяризации. Если последующий импульс накладывается на первый, то есть суммируется и общий ВПСП достигает критического уровня. Это приводит к развитию потенциала действия. Таким образом 1) временная суммация – это суммация квантов медиатора, в первую очередь, в области аксонального холмика нейрона 2) временная суммация ВПСП обусловлена тем, что ВПСП продолжается дольше, чем рефрактерный период аксона, из окончания которого выделяется медиатор.

Пространственная суммация - это явление, когда раздельная стимуляция каждого из двух аксонов вызывает подпороговый ВПСП, однако при одновременной стимуляции обоих аксонов возникает потенциал действия, т.е. процесс, который не может быть обеспечен одиночным ВПСП.

Пространственная суммация может быть линейная и нелинейная. Если стимуляция будет пропорциональная каждому возбуждающему постсинаптическому потенциалу (ВПСП), то она называется линейной. Подобная ситуация возникает, когда возбуждающие синапсы на мембране одного нейрона удалены друг от друга на достаточном удалении.

Если синапсы находятся близко друг возле друга, силовые линии соседних ВПСП уменьшают их ВПСП и общий постсинаптический потенциал не будет пропорционален каждому ВПСП.

Пространственная суммация лежит в основе эффекта облегчения и окклюзии.

106. Что такое торможение? Классификация торможения .

Если на зрительный бугор поместить кристаллы соли (NaCl), то возникает торможение – удлинение времени рефлекса (замедление времени выдёргивания лапки из кислоты). Это наблюдение позволило И.М.Сеченову высказать мнение о явлении торможения в ЦНС. В последующем такой вид торможения получил название сеченовского торможения, или центральное торможение. Периферическое торможение было открыто ещё в 1845 году братьями Вебер (торможение деятельности сердца при раздражении блуждающих нервов).

Если спинальную собаку (собаку с удалённым головным мозгом) удерживать в вертикальном положении и при этом легко надавить на подошву стопы, то она начнёт производить шагательные движения. Механическое раздражение хвоста задержит это шагание. Такое торможение наличного рефлекса раздражением другого рецептивного поля получило название «торможением Гольца». Аналогичным образом можно затормозить у таламической лягушки квакательный рефлекс путём механического раздражения боковых поверхностей спинки. Гольц показал, что торможение может быть не только в специальных центрах, но и в любом отделе ЦНС.

В ЦНС огромное число тормозных нейронов. Некоторые из этих нейронов имеют «собственное» имя – в честь открывателя этих структур, например, клетки Реншоу, клетки Уилсона и т.д. Наличие специальных тормозных нейронов доказал в 1946 г Реншоу. Каждый тормозной нейрон вырабатывает какой-то тормозной медиатор (например, глицин, или гамма-аминомасляную кислоту, ГАМК).

Торможение – это активный процесс, связанный с возбуждением и ограничивающий его. Торможение это такой же врождённый процесс как и возбуждение, но общим для всех видов торможения является отсутствие способности к распространению по мембране нейрона и его отросткам. Различают два принципиально различных механизма торможения в ЦНС (рис. 20): первичное и вторичное. Первичное торможение развивается в клетках, примыкающих к тормозному нейрону. Оно инициировано возбуждением специальных тормозных нейронов, которые выделяют тормозные медиаторы. Вторичное торможение возникает в тех же нейронах, которые генерируют возбуждение.

Постсинаптическое торможение – это основной вид первичного торможения. Его вызывает возбуждение вставочных нейронов и клеток Реншоу (афферентные нейроны тормозными не бывают). При этом торможении происходит гиперполяризация постсинаптической мембраны, в результате чего нейрон затормаживается (блокируется). Блокатором ГАМК-ергических рецепторов является бикукулин, а блокатором глициновых рецепторов – стрихнин, столбнячный токсин. Примерами постсинаптического торможения являются возвратное (аутогенное) торможение, реципрокное торможение, латеральное торможение и возвратное облегчение.
Возвратное торможение. От альфа-мотонейрона отходит аксон к соответствующим мышечным волокнам. В начальном сегменте аксона от него отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетке Реншоу) и активирует её, в результате чего клетка Реншоу вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона сам себя тормозит.
Реципрокное (reciprocus , лат. – взаимный) торможение . Сигнал (нервный импульс) от мышечного веретена скелетной мышцы через афферентный нейрон поступает в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на вставочный тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя. Это торможение описал Н.Е.Введенский, а изучил Ч.Шеррингтон.
Латеральное торможение. Суть этого торможения сводится к тому, что тормозная клетка формирует тормозные синапсы не только на активирующем её нейроне, но и на рядом расположенных, которые также затормаживаются. Например, фоторецептор, возбуждаясь, активирует биполярную клетку в сетчатке, и одновременно активирует рядом расположенный тормозной нейрон, который блокирует проведение возбуждения от соседнего фоторецептора к ганглиозной клетке. Этим самым происходит «вытормаживание» информации в соседних участках. Таким способом создаются условия для чёткого видения предмета (две точки на сетчатке рассматриваются как две раздельные точки в том случае, если между ними есть невозбуждённые участки).
Возвратное облегчение. Некоторые тормозные клетки (например, клетки Уилсона), имеют синаптические связи с аксонами других тормозных клеток. При возбуждении последних тормозятся сами тормозные клетки, которые в результате снижают своё тормозное действие на мотонейрон. Другими словами, происходит суммирование двух отрицательных воздействий, что приводит к «возвратному облегчению» влияния тормозного нейрона.
Пресинаптическое торможение (Экклс, 1962) осуществляется путём вытормаживания какого-то определённого пути, идущего к данному нейрону. Например, к нейрону подходят 10 аксонов, и к каждому из этих аксонов подходят аксоны от тормозных нейронов. Они могут тормозить проведение соответственно по каждому из аксонов в отдельности. Пресинаптическое торможение чаще развивается у окончаний афферентных соматических и вегетативных нервов. Морфологической основой являются аксо-аксональные синапсы. При этом торможение развивается в связи с уменьшением или полной блокадой выброса медиатора в синаптическую щель того синапса, который передаёт возбуждение. Таким образом, торможение передачи импульсов происходит благодаря изменению свойств его пресинаптической мембраны. В аксо-аксональном синапсе выделяется ГАМК, которая вызывает увеличение проницаемости постсинаптической мембраны для натрия.
Не исключается роль кальция и хлора. При этом для деполяризации мембраны хлор должен быть активно выведен из клетки против градиента концентрации, что вызывает стойкую деполяризацию и нарушает проведение волны возбуждения через этот участок. Это вызывает уменьшение амплитуды или полное угнетение потенциала действия, приходящего к возбуждающей терминали, что приводит к уменьшению высвобождаемого медиатора, и амплитуда возбуждающего постсинаптического потенциала снижается. Возможным механизмом пресинаптического торможения может быть уменьшение поступления кальция в пресинаптическую структуру, или истощение его внутриклеточных резервов. Это ведёт к ослаблению или прекращению секреции медиатора из пресинаптической структуры в синаптическую щель.
– это вторичное торможение. После окончания возбуждения нейрона в нём может развиваться сильная следовая гиперполяризация. При этом возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны до критического уровня, и потенциал действия не возникает.
Пессимальное торможение – это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком большого количества нервных импульсов. По современным представлениям оно играет небольшую роль в механизмах работы мозга.

107. Что такое первичное торможение ?

Первичное торможение развивается в клетках, примыкающих к тормозному нейрону. Оно инициировано возбуждением специальных тормозных нейронов, которые выделяют тормозные медиаторы.

Первичное – возникает в специальных тормозных структурах под влиянием процесса возбуждения и проявляется подавлением другого возбуждения, развивающегося в соседних с этой структурой клетках. Следовательно, для тормозимой клетки этот процесс является первичным, т.е. без предварительного возбуждения.

Первичное торможение

108. Что такое вторичное торможение и его виды ?

Вторичное – это торможение возникает в той же самой клетке, в которой наблюдалось первичное возбуждение, т.е. торможение – это результат возбуждения.

Ко вторичному торможению относится пессимальное торможение и торможение вслед за возбуждением.

Пессимальное торможение – заключается в том, что в единицу времени к нейрону поступает очень большое количество потенциалов действия. В результате этого может происходить инактивация потенциал-зависимых натриевых каналов или десинситизация (потеря чувствительности) рецепторов, расположенных на постсинаптической структуре (десинситизация рецепторов обусловлена тем, что при большой частоте поступления медиатора он не успевает разрушаться и тем самым освобождать рецепторы для взаимодействия с новыми порциями медиатора).

Торможение вслед за возбуждением обусловлено тем, что в некоторых нейронах после потенциала действия развивается длительная следовая гиперполяризация, снижающая возбудимость клетки на долгое время.

Принадлежит ведущая роль в обеспечении целостности организма, а также в его регуляции. Эти процессы осуществляются анатомо-физиологическим комплексом, включающим отделы Он имеет свое название - нервный центр. Свойства, которыми он характеризуется: окклюзия, центральное облегчение, трансформация ритма. Они и некоторые другие будут изучены в данной статье.

Понятие нервного центра и его свойства

Ранее мы обозначили главную функцию нервной системы - интегрирующую. Она возможна благодаря структурам головного и спинного мозга. Например, дыхательный нервный центр, свойства которого - иннервация дыхательных движений (вдоха и выдоха). Он находится в четвертом желудочке, в области ретикулярной формации (продолговатый мозг). Согласно исследованиям Н. А. Миславского, он состоит из симметрично размещенных частей, ответственных за вдох и выдох.

В верхней зоне варолиевого моста находится пневмотаксический отдел, который регулирует вышеназванные части и структуры головного мозга, ответственные за дыхательные движения. Таким образом, общие свойства нервных центров обеспечивают регуляцию физиологических функций организма: сердечно-сосудистой деятельности, выделения, дыхания и пищеварения.

Теория динамической локализации функций И. П. Павлова

Согласно воззрениям ученого, достаточно простые рефлекторные действия имеют в коре головного мозга, а также в спинном мозге стационарные зоны. Сложные процессы, такие как память, речь, мышление, связаны с определенными участками головного мозга и являются интегративным результатом функций многих его участков. Физиологические свойства нервных центров и обуславливают формирование основных процессов высшей нервной деятельности. В нейрологии, с анатомической точки зрения, участки центральной нервной системы, состоящие из афферентной и эфферентной частей нейронов, стали называть нервными центрами. Они, как считал российский ученый П. К. Анохин, образуют (объединение нейронов, выполняющие сходные функции и могущие находится в различных участках ЦНС).

Иррадиация возбуждения

Продолжая изучать основные свойства нервных центров, остановимся на форме распространения двух главных процессов, происходящих в нервной ткани - возбуждения и торможения. Он называется иррадиацией. Если сила раздражителя и время его действия велики, нервные импульсы расходятся по отросткам нейроцитов, а также по вставочным нейронам. Они объединяют афферентные и эфферентные нейроциты, обуславливая непрерывность рефлекторных дуг.

Рассмотрим торможение (как свойство нервных центров) более подробно. головного мозга обеспечивает как иррадиацию, так и другие свойства нервных центров. Физиология объясняет причины, ограничивающие или препятствующие распространению возбуждения. Например, наличие тормозных синапсов и нейроцитов. Эти структуры выполняют важные защитные функции, вследствие чего снижается риск перевозбуждения скелетной мускулатуры, способной перейти в судорожное состояние.

Рассмотрев иррадиацию возбуждения, нужно вспомнить следующую особенность нервного импульса. Он движется только от центростремительного нейрона к центробежному (для двухнейронной, рефлекторной дуги). Если рефлекс более сложный, то в головном или спинном мозге формируются интернейроны - вставочные нервные клетки. Они принимают возбуждение от афферентного нейроцита и далее передают его на двигательные нервные клетки. В синапсах биоэлектрические импульсы также однонаправленные: они движутся от пресинаптической мембраны первой нервной клетки, далее в синаптическую щель, а из неё - в постсинаптическую мембрану другого нейроцита.

Суммация нервных импульсов

Продолжим изучать свойства нервных центров. Физиология главных отделов головного и спинного мозга, являясь наиболее важной и сложной отраслью медицины, изучает проведение возбуждения через совокупность нейронов, выполняющих общие функции. Их свойства - суммация, может быть временной или пространственной. В обоих случаях слабые нервные импульсы, вызванные подпороговыми раздражителями, складываются (суммируются). Это приводит к обильному выделению молекул ацетилхолина или другого нейромедиатора, что генерирует потенциал действия в нейроцитах.

Трансформация ритма

Этим термином обозначают изменение частоты возбуждения, которое проходит через комплексы нейронов ЦНС. Среди процессов, характеризующих свойства нервных центров - трансформация ритма импульсов, которая может возникать вследствие распределения возбуждения на несколько нейронов, длинные отростки которых формируют места контактов на одной нервной клетке (повышающая трансформация). Если же в нейроците появляется единичный потенциал действия, как результат суммации возбуждения постсинаптического потенциала - говорят о понижающей трансформации ритма.

Дивергенция и конвергенция возбуждения

Они являются взаимосвязанными процессами, характеризующими свойства нервных центров. Координация рефлекторной деятельности происходит благодаря тому, что в нейроцит одномоментно поступают импульсы от рецепторов различных анализаторов: зрительного, обонятельного и кожно-мышечной чувствительности. В нервной клетке они анализируются и суммируются в биоэлектрические потенциалы. Те, в свою очередь, передаются к другим участкам ретикулярной формации головного мозга. Этот важный процесс носит название конвергенции.

Однако каждый нейрон не только принимает импульсы от других клеток, но и сам образует синапсы с соседними нейроцитами. Это явление дивергенции. Оба свойства обеспечивают распространение возбуждения в ЦНС. Таким образом, совокупность нервных клеток головного и спинного мозга, выполняющих общие функции - это нервный центр, свойства которого мы рассматриваем. Он обеспечивает регуляцию работы всех органов и систем человеческого организма.

Фоновая активность

Физиологические свойства нервных центров, к одному из которых относится спонтанное, то есть фоновое образование электрических импульсов нейронами, например, дыхательного или пищеварительного центра, объясняются особенностями строения самой нервной ткани. Она способна к самогенерации биоэлектрических процессов возбуждения даже в период отсутствия адекватных раздражителей. Именно за счет дивергенции и конвергенции возбуждения, рассмотренных нами ранее, нейроциты получают импульсы от возбужденных нервных центров по постсинаптическим связям той же ретикулярной формации головного мозга.

Спонтанная активность может быть вызвана микродозами ацетилхолина, попадающего в нейроцит из синаптической щели. Конвергенция, дивергенция, фоновая активность, а также другие свойства нервного центра и их характеристика напрямую зависят от уровня обмена веществ как в нейроцитах, так и в нейроглии.

Виды суммации возбуждения

Они были рассмотрены в работах И. М. Сеченова, который доказал, что рефлекс можно вызвать несколькими слабыми (подпороговыми) раздражителями, которые достаточно часто действуют на нервный центр. Свойства его клеток, а именно: центральное облегчение и окклюзия, и будут рассмотрены нами далее.

При одновременном раздражении центростремительных отростков ответная реакция оказывается больше, чем арифметическая сумма силы раздражителей, действующих на каждое из этих волокон. Это свойство носит название центрального облегчения. Если же действие пессимальных раздражителей, независимо от их силы и частоты, вызывает снижение ответной реакции - это окклюзия. Она является обратным свойством суммации возбуждения и приводит к уменьшению силы нервных импульсов. Таким образом, свойства нервных центров - центральное облегчение, окклюзия - зависят от строения синаптического аппарата, состоящего из пороговой (центральной) зоны и подпороговой (периферической) каймы.

Утомляемость нервной ткани её роль

Физиология нервных центров, определение, виды и свойства, уже изученные нами ранее и присущие комплексам нейронов, будут неполными, если мы не рассмотрим такое явление, как утомляемость. Нервные центры вынуждены проводить через себя непрерывные серии импульсов, обеспечивая рефлекторные свойства центральных отделов нервной системы. В результате напряженных обменных процессов, осуществляемых как в самом теле нейрона, так и в глии, происходит накопление токсичных метаболических шлаков. Ухудшение кровоснабжения нервных комплексов также вызывает снижение их активности по причине дефицита кислорода и глюкозы. Свою лепту в развитие утомляемости нервных центров вносят также и места контактов нейронов - синапсы, которые быстро снижают выделение нейромедиаторов в синаптическую щель.

Генезис нервных центров

Комплексы нейроцитов, расположенные и выполняющие координирующую роль в деятельности организма, претерпевают анатомо-физиологические изменения. Они объясняются усложнением физиологических и психологических функций, возникающих в течение жизни человека. Наиболее важные изменения, затрагивающие возрастные особенности свойств нервных центров, мы наблюдаем в становлении таких важных процессов, как прямохождение, речь и мышление, отличающие Homo sapiens от остальных представителей класса млекопитающих. Например, становление речи происходит в первые три года жизни ребенка. Являясь сложным конгломератом условных рефлексов, она формируется на базе раздражений, воспринимаемых проприорецепторами мышц языка, губ, голосовых связок гортани и дыхательной мускулатуры. К концу третьего года жизни ребенка все они объединяются в функциональную систему, в которую входит участок коры, лежащий в основании нижней лобной извилины. Он был назван центром Брока.

В формировании принимает участие и зона верхней височной извилины (центр Вернике). Возбуждение от нервных окончаний речевого аппарата поступает в двигательный, зрительный и слуховой центры коры головного мозга, где и формируются центры речи.

Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией .

Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Если же наоборот, от нескольким нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис).

Конвергенция означает объединение сигналов множественных входов на одном нейроне. На рисунке схематически изображена конвергенция сигналов, исходящих из одного источника. Это значит, что на одном нейроне заканчиваются многочисленные терминали нервных волокон одиночного тракта. Этот тип конвергенции важен, поскольку нейроны почти никогда не возбуждаются потенциалом действия одной входящей терминали. Но потенциалы действия многих терминалей, конвергирующих на нейроне, обеспечивают достаточную пространственную суммацию, чтобы сдвинуть мембранный потенциал нейрона до порогового уровня, необходимого для его возбуждения.

Возможна также конвергенция сигналов (возбуждающих или тормозящих), исходящих из многих источников. Например, на вставочных нейронах спинного мозга конвергируют сигналы от:

(1) периферических нервных волокон, входящих в спинной мозг;

(2) проприоспинальных волокон, идущих от одного сегмента спинного мозга к другому;

(3) кортикоспинальных волокон из коры большого мозга;

(4) нескольких других длинных нисходящих путей из головного в спинной мозг. Затем сигналы от вставочных нейронов сходятся на мотонейронах спинного мозга, непосредственно управляющих функцией скелетных мышц.

Такая конвергенция позволяет осуществлять суммацию информации из различных источников, а ответная реакция нейрона является результатом интеграции всей этой информации. Конвергенция - один из важных способов, с помощью которых центральная нервная система коррелирует, интегрирует и сортирует различные типы информации.

Иногда в ответ на сигнал, входящий в нервный пул, на выходе одновременно появляются возбуждающий сигнал, идущий в одном направлении, и тормозной сигнал, направляющийся по другому пути. Например, когда в спинном мозге одна группа нейронов посылает возбуждающий сигнал для движения ноги вперед, через другую группу нейронов передается сигнал, тормозящий мышцы, двигающие эту ногу назад, чтобы они не мешали движению вперед. Этот тип контура, называемый контуром с реципрокным торможением , характерен для всех нервных центров, управляющих мышцами-антагонистами.

На рисунке показан механизм развития такого торможения.

Входящее волокно одновременно стимулирует возбуждающий выход пула (нейрон 1) и вставочный тормозной нейрон (нейрон 2), секретирующий медиатор, который тормозит второй выход пула. Этот тип контура важен также для предупреждения гиперактивности во многих частях мозга.

Например, к одному мотонейрону могут подходить нервные окончания от нескольких афферентных нейронов. В таких сетях вышележащие нейроны управляют ниже лежащими.

Иерархические системы обеспечивают очень точную передачу информации.

В результате конвергенции (когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня) или дивергенции (когда контакты устанавливаются с большим числом клеток следующего уровня) информация фильтруется и происходит усиление сигналов.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

Но подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Любая инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему.

Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.

Иерархические системы существуют, конечно, не только в сенсорных или двигательных путях. Тот же тип связей характерен для всех сетей, выполняющих какую-то специфическую функцию.

БЕЗВЕРХОВА

Локальные сети .

3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.

В связи с наличием многочисленных связей между нейронами сети в них может возникать иррадиация возбуждения. Это его распространение на все нейроны. В результате иррадиации возбуждение может переходить на другие нервные центры и даже охватывать всю нервную систему.

В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:

Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они широко распространены во всех мозговых сетях.

Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Межнейронные связи - это контакты между нейронами, осуществляемые посредством синапсов.

Типы межнейрональных контактов:

1. аксоносоматические - между аксоном и клеткой ткани-мишени;

2. аксонодендритические - между аксоном и дендритом другого нейрона;

3. аксоноаксональные - между данным аксоном и аксоном другого нейрона

Главная задача нейрона - получить информацию, «осмыслить» ее и передать дальше.

Для этого нейрон снабжен многочисленными дендритами, по которым различная информация поступает в клетку, и одним единственным аксоном: по нему обработанная информация покидает нейрон, передаваясь дальше по нервной цепочке. На некотором расстоянии от тела клетки аксон начинает ветвиться, посылая свои отростки к другим нервным клеткам, а также к их дендритам. Число дендритов, так же как и ветвлений аксона, постоянно меняется.

Особенно интенсивный рост этих элементов наблюдается в первые пять - семь лет жизни ребенка.

Соответственно растет и число синаптических связей нейронов: до 80% поверхности нервной клетки может быть покрыто синапсами.

Установлена также динамичность синаптических связей: одни из них способны исчезать, другие - возникать. И здесь очень важное значение имеет та функциональная нагрузка, которую получают либо, напротив, не получают нейроны.

В головном мозге человека содержится примерно 10"° нейронов, и каждый из них образует от 10 3 до 10 4 связей с другими нервными клетками. Общая длина проводящих путей в ЦНС составляет около 300-400 тыс. км, т. е. расстояние от Земли до Луны.

Конвергенция нервных импульсовЛат. converqere - сближать, сходиться - схождение к одному нейрону двух или нескольких возбуждений от сенсорных раздражителей (например звук, свет). Различают несколько видов конвергенции.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов мультибиологическая - схождение к одному нейрону двух или нескольких возбуждений от биологических раздражителей например голод и боль, жажда и половое возбуждение).

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.



Дивергенция возбужденияЛат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Окклюзия. Лат. occlusum - закрывать, замыкать - взаимодействие двух потоков импульсов между собой. Впервые явление окклюзии было описано Ч. Шеррингтоном. Сущность его заключается во взаимном угнетении рефлекторных реакций, при котором суммарный результат оказывается значительно меньше, чем сумма взаимодействующих реакций. Согласно Ч.Шеррингтону, явление окклюзии объясняется перекрытием синаптических полей, образуемых афферентными звеньями взаимодействующих рефлексов. Поэтому при одновременном поступлении двух афферентных влияний возбуждающий постсинаптический потенциал вызывается каждым из них отчасти в одних и тех же мотонейронах спинного мозга.

Суммация импульсов в нервных центрахВ нервном волокне каждое одиночное раздражение (если оно не подпороговой и не свехпороговой силы) вызывает один импульс возбуждения. В нервных же центрах, как показал впервые И.М.Сеченов, одиночный импульс в афферентных волокнах обычно не вызывает возбуждения, т.е. не передается на эфферентные нейроны. Чтобы вызвать рефлекс необходимо быстрое нанесение допороговых раздражений одно за другим. Это явление получило названиевременной или последовательной суммации. Ее сущность состоит в следующем. Квант медиатора, выбрасываемого окончанием аксона при нанесении одного допорогового раздражения, слишком мал для того, чтобы вызвать возбуждающий постсинаптический потенциал, достаточный для критической деполяризации мембраны. Если же к одному и тому же синапсу идут быстро следующие один за другим допороговые импульсы, происходит суммирование квантов медиатора, и наконец его количество становится достаточным для возникновения возбуждающего постсинаптического потенциала, а затем и потенциала действия. Кроме суммации во времени, в нервных центрах возможна пространственная суммация. Она характеризуется тем, что если раздражать одно афферентное волокно раздражителем допороговой силы, то ответной реакции не будет, а если раздражать несколько афферентных волокон раздражителем той же допороговой силы, то возникает рефлекс, так как импульсы, приходящие с нескольких афферентных волокон суммируются в нервном центре.

Иррадиация возбужденияЛат. irradiare - озарять, освещать - распространение процесса возбуждения из одного участка ЦНС в другие. Согласно И.П.Павлову иррадиация возбуждения лежит в основе генерализации условного рефлекса и играет важную роль в формировании временной связи.

Основой для иррадиации возбуждения является определенная морфологическая и функциональная структура различных отделов мозга, в связи с чем возбуждение распространяется по определенным путям и в определенной временной последовательности. Иррадиация возбуждения может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливающим распространение возбуждения по ней, как это бывает, например, при эпилепсии.

Распространение возбуждения во всех направлениях, по всем этажам ЦНС обусловлено наличием огромного количества коллатералей. Каждый аксон дает коллатерали к целому ряду нейронов, а от них коллатерали идут к еще большему количеству нейронов и импульс, пришедший в ЦНС может распространяться (иррадиировать) по многим направлениям ко многим центрам.

В стволе головного мозга ретикулярная формация имеет колоссальное количество связей и по ее восходящему отделу возбуждение почти диффузно распространяется к коре больших полушарий.

Понравилась статья? Поделиться с друзьями: